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ABSTRACT

We show how to construct, from certain spectral data , a discrete inner

product for which the associated sequence of monic orthogonal polynomials

coincides with the sequence of appropriately normalized characteristic

polynomials of the left principal submatrices of the Jacobi matrix. The

generation of these orthogonal polynomials via their three term recurrence

relation , as popularized by Forsythe , ther pro vides a stable means of

computing the entries of the Jacobi matrix. The resulting algorithm might be of

help in the approximate solution of inverse eigenvalue problem s for Sturm-

Liouvllle equations .
Our construction pro vides , incidentally, very simple proofs of known

results concerning existence and uniqueness of a Jacobi matrix sat isfy ing

given spectral data and Its continuous dependence on that data .
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THE N U M E R I C A L L Y  STABLE RE CONSTRUCTION OF A JACOBI

MATRIX FROM SPECTRAL DATA

C. de Boor!) and G. H. GoIub~~
,2)

I. Introduction. Gantmacher and Krein [ 3 ]  take the term “Jacobi matrix ” to mean nothing
more than “tridiagonal matrix ’ . But it seems to have become accepted in papers on the pro ble r

of concern here to mean by “Jacobi matri x ’ a repl , symmetric ,  tr id t~ gonal m a t r i x  whose next -

to-di agonal  elements are positive. We follow such usage here , and write such a Jacobi

matr ix  I of order n as

a 1 b
1

b
1 a2 b

2 I~Dccb 2 a 3 b 3( 1 )  = 
. . 

. , b . ~‘ 0, a l l  I . ~~~ ,~

b a bn-2 n-i  n - i  17
DSSThIgur,c~b a

- n.’ I fl _ OJQ ~~~
- ‘ ‘

Further , we denote its left principal submatr ix  of order r by J .

We consider the following inverse problem.

n n-IProblem A .  Give n the sequences X := and 
~ 
:~ (~

i )
l 

with

(s) )
~i ~~~~ 

< > ‘l+ l’ i = 1, .  . . , n - I

construct an n-th order Jacobi mat r i x  J which has 
~~~

, . . . , X ~s i ts  cig~~~~ a1u es and

~L
1~ . . The ejg enva lues of it s left princip al s u b m a t r i x  J~~ 1 or order n - 1.

It is well known that the elgenvalues of J 1 s t r ic t ly  separate those of J = J so

that condition (S) is necessary for the existence of a solution . Hochstadt [ 7 J  proved th at

the problem has at most one solution . L. J . Gray and D. G. Wilson [ s] showed it to have
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at least one solution , as did 0. H. Hald [6 ] .  The latter also demonstrated the cont inuous

dependence of I on X and ~i and described an algorithm for the construction of J which ,

however , fai ls  to be stable. He also announced an i te ra t ive , l inear ly  convergent procedure

for the determination of J. A d i f ferent  i terative procedure was developed by Barci lon E l i .

By contrast , the algorithm described below In Section 4 Is direct , I . e . , not i te ra t ive ,

and is stable . Its derivation provides simple proofs of the results  concerning Problem A

j u st  mentioned .

We also consider the following related problems.

Problem B. Given two str ict ly increasing sequences X := (> ~ )~ ~~ X : = (%~ )~ ~~~

~~ 
< X , ~fl i, determine an n—th order Jacobi matrix I which has 

~ I’ . , \ as its

ei~envalues and for which the matr ix  J’~ obtained from J by ch ii~~ a n to a ” ,

, X as its e igenvalues .

Problem C. Given the s t r ic t ly  increa~~~g se~ uence X := ( X . ) ~~, construct  an n - th  order

persvmmetri~J~~Q~tj Iia tiix J having X i , .  . . , X as its e igenvalues .

Here , a matrix A = (a
fl
) Is called persymmetric if it is symmetr ic  with respect to its

second diagonal , i . e . , If a1~ = 
~~~~~~~~~~~~ 

all I and i . The Jacobi matrix ( 1) is

persymmetr ic iff a1 
= a~~1 1  and = b 1, all I.

Hochstadt [7 1 showed Problem C to have at most one solution . Hald [6]  showed it to

ha ve at least one solution and showed the solution to depend continuously on X .

In the analysis  of these problems , the Intimate connection between Jacobi matrices

and orthogonal polynomials plays an essential role. We recall the salient facts of this

connection In the next section .
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2. Jacobi matr ices  and ~~~~~~~~~~~~~~~~~~~~~~ We cont inue  to use the no t a t i o f l

for the left princi p al submatrix of order i of the Jacobi matrix (lj . Lot

p .( t )  : = det( t — J , ) ~ = 1, . . . , n

Then p. is a monic polynomial  of degree i , a l l  i , arid one verifies easily that the

sequence (p.) satisfies the three term recurrence

p
1
(t) = ~t - a 1

)p~ 1( t )  - b~~1p .2 (t), i = 1, . . ., n, with
(2)

0, p
0
(t) := 1

Conversely, if  we start  with a sequence ( p )  of monic  po lyn omia l s  wi th  deg p . i , all

i, which also satisfies the recurrence (2 ) ,  then the Jacobi m a t r i x  ( I )  belongs to it in the

sense that then p
1
(t) = det(t - J.) for I = 1,.. . , n. Since the zero s of p . are the

eigenvalues of J1, all i , we can there fore phrase Problem A equiv ~”ent ly  as fol lows.

Problem A’ . Given the sequences X := (x .)~ and .
~ 
: (

~± ) ~~~~ 
<

all i , construct sequences a := ( a ) ~ and b := (b . ) ~~~ ~~~~~~~~~~~~~~~~~~~ ( p )  ~f

polynomials g iven by (2)  sa t i s f ies

n-I n- 
p 1(t) = TI (t - ~

) and p (t ) = ~[{ (t  -
3= 1 n 

j= l

It is clear that this problem has at most one solution since we can a lways  run ~ie

recurrence (2)  backwards:  If we already know the monic polynomials  p. and p1 1  (of

degree I and I — I , respectively),  then a . is u n i q u e l y  ie termined by the requirerne :-i t  t h a t

q(t) := p (t) — (t — a.)p.
1(t)

2be a polynomial of degree i - 2. Further , the number -b
1 2  is then found as the leadin ~

coefficient of q, and p1 2  is then constructed by dividing q by Its leading coefficie~it.

This construction of (p 1) satisf y In g (2)  from p 1 and p goes back to Wendre’’ [ ‘~ I
and has been used by Hald to solve Problem A or A’ numer ica l ly .  We , tco , did try it in

— 3 —
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some examples and found it  to be bad l y uns tab le .  But , In t rying to understand Hochstadt ’ s

procedure for the reconstruction of J fro m X and ~ [ 8 J ,  it occurred to us that  it

should be possible to construct  a discrete inner product whose corresponding orthogonal

polynomials sa t isfy  (2 ) ,  thus allowing us to generate a and b in the manner advocated

by Forsythe [ 2 1 .

We recall the detai ls .  Denote by 
~ k the linear space of polynomials  of Qt~~i

i. e. , of degree < k , with real coefficients , and let ( ,. ) be a symmetric b i l inear  form

which is a~i inner product on I P .  Tnen there exis ts  exact ly one sequence ( q ) ~ of monic

p olynomials, with q of degree i , all i , which is orthogonal with  respect to the inner

product (, ) , i . e . , for  which

(q 1,q
3
) = 0 , for I *

One may determine q. as the error in the best approximation from IP . to the function

f(t) := t1, with respect to the norm

H f I I  := ( f , f ) 2

in I P .  Alterna tively , one may construct (q . )~ by Its three ter m recurrence , an idea

popula rized specifically for the case of a discrete inner product by Forsythe [ 2 ] :  One computes

(3) q 1(t) = 0 , q~ (t) = 1, q1
(t)  = (t - a1)q . 1(t) - ~3~~1q 1 2

(t ) , I = 1, .. . , n

with the numbers a1 and ~~ computed concurrently by

(4a) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I = I , . . .

(4b) := 11q 1 II / H q 1 1 I1 , i = 1, . ..  , n — 1.

Here , It I s  assumed that ( t f ( t ) ,  g ( t ) )  ( f ( t ) , t g ( t ) ) .

The computational process (3 ) - (4 )  for the vectors a and ~ is very stable. We will ,

therefore , hav e solved Problem A In a satisfactory manner provided we can construct a

suitable inner product for which q1 
= p

1 for I = n - I and i = n . This we now do.
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From a computational point of view , the s imples t  b i l inear  form ( , )  which Is an

nner product on IP is of the form

(5) ( f , g)  := 

~ 
f(~~. )g(~~ )w

1, al l  f ,g

with 
~l < < 

~~~~~

, and w~ > 0 . I = 1, . . .  , n .

Lemma 1. Let ( q ) fl be the sequence of monic or thogonal  po lyn omi a l s  for ~h i n ~ c~

product (S) .  Then

(6) TI (t - 
~~

.) = q ( t)

(7) w
1 ~~~~~~~~~~~~~~~~ I = 1, . .  . , n , with  ~ := h g 1

Consequent ~~~~recover (5)  from q 1 and q .

n
Proof. The polynomial q(c) : 1 ( t  - 

~~~.) is a mor iic po l ynom ial of degree n which is

orthogonal wi th  respect to the inner pr3duct (~~) t o  all  f unc t ions , hence m u s t  agree wi th  q .

This proves (6) .  As to (7 ) ,  we know tha t  q 1 is ortho cjon al to 
~ n- 1 ’ This neans  t h a t

the linear functional  L give n by the rule

Lf := ( f , q 1) 
~ 

f(~ .) q 1(~~)w , all

vanishes on ll’
~~~

. Since any n - 1 distinct point evaluations are linearly Ln~ependent on

this impl ies that

~ 0 , all i

For the same reason , there is , up to mul t ip l ica t ion by a scalar , exactly one linear funct ional

M, of the form Mf = ~~f(~ 1)m 1, all f , which vanishes on IPn j ~ 
Since both L and

— 5.-



the (n - l)st divided difference on the points 
~~ 

. ,  are such linear

fu nct ionals , it follows that , for an appropriate scalar y,

Lf = 
~~~ ~l’ 

, , ~~~~ J f  = y 
1= 1 

(~~~~ 
- 

~~~~~ all

J *1
But this states , with (6) , that

q 1(~ 1)w = ‘y/q ’( ~ 1), I = 1, . . . , n

and , in particular ,

h1q 1 h I = 

1=1

thus provi ng (7) .  I I I
One may view Lemma 1 as giving a way to construct the computat ional ly  s imples t

inner product with respect to which a given sequence ( p . ) ~ of monic polynomials s a t i s f y i n g

a three term recurrence (2) is orthogonal.

— 6—



3. A solution of Probiems A1 B~ C. Lemma 1 shows how to reconstruct the discrete

Inner product (5) fro m i ts  last two orthogonal po l ynomia ls .  It also shows the well kr,,, ’.~r

facts that q has n real zeros , all simple , and that the n - 1 zeros of q
1 

strtc:ly

sepa rate those of q .  Indeed , the posi t ivi ty of the w ’s demands by (7 )  tha t

0, all  I, while , clearly, (_)n i q~(~~) > 0, all i , thrreforo

< 0 . 1 = 1, . . . , n — I

showing q 1 to ha ve a simple zero between any two zeros of q , .

Conversely, if we compute w by

(8 a) w1 := 1 = 1, . . .

where

(8b) :~ ~~~~ I = 1, . . .

n-I
(8c) Pn_ i (t) := TI (t —

n
(8d) p (t) := iT (t — x )

J = l

with X 1 ~~~~ 
< X

l+l~ 
all i , then w1 > 0 , all  I , hence ( 5)  is then an inner product on

lP~ , and necessarily p = q ,  by (6),  and p 1 = 
~~~~_ 1 

since p 1(k
1

) = q 1(x ),

I = 1, .. ., n , by (7) ,  and both polynomials  are of degree < n .

This proves that Prob lem A has exactly one solution for given X and ~.i sat is~y.~qg, ( 2 ) .

Further , since a = a and b = ~3 as determined by (3)-(4 )  depend continuously on f, and

w , while the latter , as determined by (8), depend continuously on \ and ~~ , It follow s

that J depends continuously on X ~~~

Problem B Is closely related to Problem A. In terms of the monic polynomials

p1(t) = det(t — J1), I = l , . . . , n

—7—
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we are given the in fo rm at ion  that

(t - ~~ = Pn
( t )  = (t  - a ) p 1(t )  - b2

1P 2(t)

and that

~~ (t - X .)  = p ( t ) = (t - a~ )p 1
(t) - b 2 

1p 
2

(t)

We conclude that

TI (t - C) - TI ( I  - k ,) (a n

*and tnerefore , comparing coeff icients  (or else , comparing the trace of I with that  of J ) ,

* *
~~, (X . - X . ) a  — a

1= 1 
.1 3 ii fl

*This allows ca lcula t ion  of a once we know a . Further , since we only need to known n

the weight s w for the inner product (5 )  up to a scalar mul t ip le  in order to reconstruct a

and b via (3 ) - (4 ) ,  it follow s that we get J (and uniquely so) by choosing

1 1, . .  ., n

:= l/( p~ (X 1
) H (C- xJ ) .

Note how the assumpt ion 
~ 

< all I , Insures that  w , > 0 , all  1.

The solution of Problem C leads to an in t r iguing fact which is also of help in the f ina l

algorithm for the solution of these prob lems. We came upon this  fact accidental ly.  We

had somehow gained the impression in reading Hochstadt ’s paper [~ J that the correct weights

In Lemma I would probably be

(10) W
I 

= q~~ 1j q ~ (~~), i = 1, . . .

and a quick numerical  experiment confirmed this guess. Yet , when It came to proving it,



we could only prove that WI = l/(q 1(~1
)q

1~(~~
)), all I . This seeming contradiction is

resolved by consideration of the characterist ic polynomials  of the ~~~~ p r inc ipa l  sub-

matrices of J.

Let S be the permutation matrix carrying (1 , 2 , . . . ,  n) into (n , n - I , . . . , 1), i . e . .

‘
I~ 

~~~~~~~ i + J , n+ l ’i , j l  — 
‘ -

and denote by j the reflection of J across its second diagonal ,

* a l b 1

- 
b a b

J : = S U J S :  1 2 2

n-I  n

with = a
~ +1 ., b1 = b~~ 1~ all I. Correspondingly,  let

:= 0, ~ 0
( t )  := 1, p . ( t )  := det(t — I . ) ,  i 1, .

Lemma 2. ~~~~ I = I , . . , n , p 1(X 1)p~~ 1(X . ) = (b 1 
. . . .  . b 1) 2 .

QL~ For each i~ ~n-l i n— l~’i~ 
is the product of the (n - l)st  order lef t

principal minor w i t h  the (n - l)st order right principal minor of the s ingu la r  matr ix

A := —

I . e . , p 1
(X 1

) = det Aft : : : : ~
) and 

~~~~~~~ 
= det A (~

’ : : : : ~) and det A = 0.

2, . . . ,n — l
Apply Sylvester ’s ident ity (see , e .g . , [3 , p . 15] ) ,  us ing A 2 , . .  . ,~~~~ 

— 
as pivotal  block ,

to get that

det A ( ”  
, n - 1) det A ( ”  

. . . , n - 1)

‘2 1 
l , . . . , n — l  2 , . . . ,  n

0 = det A( 1~~ )det A = det
‘2 n ‘2 n

det At ~~~~~~~~ det Al

= 
~~~~~~~~~~~~~~ 

- ( ( - ) ~~
tb1 

. . .. . b~~ 1
) 2 . I I I

A



Here, we have used the abbreviation

l’~~” ’ r r sA . . : = ( a . . )
i J  p l,r l

If now J is persymmetric , then J = J and so p. = p1, al l  i .  The lem,na then

i m p l i e s  tha t  (p 1(\ .) ) 2 
= (b 1 . . .  b 1

) 2
~ all i . Since we only need to know the

weigh t  vector w up to a scalar  m u l t i p l e , i t  follows tha t  we only need to know 
~n in

order to reconstruct a persymmetr ic  J, thus  solving Problem C.

We conclude fu r the r  tha t  the  computa t ions  ( 3 ) — ( 4 )  a lways  gene r - it e  th .~~~~~agonals

and ~3 of a p ersymmetric  Jacobi matr ix  if we use the discrete inner p roduc t

( f ,g )  := 

~ 
f(~ 1)g(~~)/~~~ ~ 

-

J �i

We were interested in Lemma 2 because of its impo rtance for the a lgor i thm in the

next section and have therefore not followed the more cus tomary t re atment  of Problem C.

This treatment goes back to Gantmacher and Krein and consists In using the persymm etry  of

J to construct an equivalent problem of the form B and of half the size , thus  reduc ing  it

to a problem with a known solution.

-10-



4. An algorithm. Lemma 2 shows that  we could also determine the correct weights

w for the generation of a and b via (4) by

W
1 

= 
~n — l ~’i n ~ ’i~’ I = 1, . . . , n

To say it differently, if the inner product (~~~) is given by

:= X 1, I = 1, . . .  , n
( I l )  1

w1 := p 1(X .)/p ’(X 1), I = 1, . . . , n

* then the quantities generated by (3)-(4) are q~ 
= p ., a1 

= 
~~~~

‘ ~~ 
b ., all I . Th is sa ys

that use of the weights (11) rather than the weights (8b) in the computations ( 3 ) — ( 4 )  also

generates the nonzero entries of I , but in reverse order. This explains the success in

our numerical experiments using the weights (10) alluded to ear l ier :  all examples happened

to have been persymmetric .

Use of the weights (11) in pre ference to (8b) has some computat ional  advantages.

Because of the interlacing conditions (S), we get the bounds

x
i

_
~~i_l ~. - x .

(12) 
i 

— 

I 
< Pn ~~~~~~~~~~ 

< 1

- 1 1 n I

where the first (last) factor In the lower bound is to be omitted in case i = 1 (I = n). Tnis

shows tha t overflow or underfiow is highly un l ike ly  to occur in the calculation of the weights

(11). By contrast, the computation of the numbers l/(p 1
(X .)p ’(X )) has to be care fu l ly

monitored, In gene ral , for the occurrence of overflow or underflow , else , one has to

compute the logarithms of these numbers , a somewhat more expensive procedure .

We offer the following algorithm for the solution of Problem A, and recall that Problems

n-i
B and C can also be solved by It, If the definition of p

1
(k

1
) :r TI (X

1 
- 

~~~
) used here is

1

modified appr opri ately.

—Il —

_ 
-



Algorithm. Given the n eigenvalues X
1 

< . . .  < k  of the Jacobi matr ix  (I )  and the

n - 1 ~iqenvalues of its lef t  princ ip al minor  of order n - 1. i~~te tha t ,

necessarily , < < X~~~1, ~~~

1. Compute the weights w fro m X and ~~

1.1 temp( i — 1) := k ., I = 2 , . . . , n

1.2 for i = l , . . .  , n , ~~ :

* 

1.21 w . := 
~~~~ (k ~ 

- 
~~~ )/ ( x i - t e m p ( j ) )

1.22 t emp(i) :=

2. Generate the values at k gf the first  two orthogonp l po l yn omia l s :

2.1 s := 

1 = 1  
w~ =

2 . 2  a1 
1=1  

w .X
1
)/s = (p 0 ,p 1>/s

2 . 3  ~~~ I = 1, . . . , n , ~~ :

2. 31 pkml(i) : 1 =

2. 32 pk(i) — =

3. Cpmp~~~ “~ k 11 2 
~~~ ak , b~~ 1, ilien use them to generate the values at ~ ~~ ~k+l

from those~~~ ~k and 
~k-1 by the three term recurrence:

3.1 ~Qj k = 2 , . . ., n , ~~~
i 23.11 8 := S =

3.12 s := t := 0

3.13 
~~~~ 

I = 1, . .  . , n , ~Q:

3.13 1 p := w1*pk( i) **2

3.132 s : 5 + p

3 .133  t : t +

— 1 2—



—23. 14 b k l

3.15 
~k := t/s

3.16 j~~ I = l , . . . , n , do:

3.161 p := pk( i )

3.162 pk( i )  := (\ . - a k ) P  - b~~ 1
e pk m l ( i )

3.163 pkm l ( i )  := p
4. Compute from b~~. Also, if a ~~~~ b , rather than the vectors a ~~~ b ~~

wanted, this  is the place to reorder them.

4.1 := sqrt(~~~), k = 1, . .  . , n —

Output consists ol the vectors ~ and ~~ , with ~ = a . ,  b . = b . ,  all i , and aI n+ l— i i n—i — —
~jj~ b the diag~ na 1s of (1).

We have carried out various numerical experiments with this algori thm and describe

here only three.

For the n-th order Jacobi matrix J with general row 1, -2 , 1, tne eigenvalues

are given explicitly (and in order) by the formula

= 2(cos - 1) , j 1, .. . , n

Starting with these values and the corresponding sequence (~~~~)~~~~~
‘ for the algorithm

produced approximation s to the diagonal and the offdiagonal entries of ‘n whose maximum

and average error are recorded for n = 25 , 50 , 100, and 200 in the f i rs t  columns of the

following table. All calculations were carried out on a UNIVAC 1110 in single precision

(27 binary bit floating point mantissa) .

—1 3—



diagonal offdiagona l  diagonal offdiagona l

max . ave . max .  ave . max .  ave . max .  ave .

25 4 . — 7  2. — 7  2. —7 6. —s 2 . —6 ~. —7 I . — 6 4. — 7

50 9. —7 l . —7 4 . — 7 2 . —7 6. — 4 i . —~ 5 . — S  2 . -
~

100 2. —~~ 7. —7 8 . —~~ 2. —7 7 . — I 3. — 2  3 . — i  I .  — 2
200 3. —6 9 . — 7 l . — 6 3. —7 8 . — i  2 . — 2  ~~~ i . —2

Table I .  M a x i m u m  and average error in the d iagonal  d f l l  c t L ~ i ;j n ~il

entr ies of two speci f ic  Jacobi mat r ices  as recons t ruc t ed  wi th

the algori thm of th i s  section from (appr ox  I i t~~) s pec t r i  I i~~ta .

For variety,  we also consider the n- th  order Jacobi m a t r i x  J w i th  general  re.~.

— i/n , i/n — 2 , i — (I  + 1)/n , i = I , . . .  , n

We know of no simple formul a for i ts  eigonva lues , therefore used the algor i~hrn t qf 1 on

pp. 232-233 of Wilkinson and Reinsch ’ handbook [ l0 J to compute them and those o~

The tolerance (relat ive error requirem ent) k r  tq l  1 we chose as 1. — 7 .  With th i s  spe:~r . i1

In lormation , we entered the above algori thm and so reconstructed J appr ox ima te l y .  L r i o r ~

of this reconstruction are also given in Ta ble 1, in the last four co lumns.  There is a

s ign i f ican t  deterioration as n increases.

As can be expected from formula (11) for the weights  (w , ) ,  the condit ion of the problem

of determining J fro m (X i
) and ~~~~~~ deteriorates as some or more 

~ 
approach the

corresponding since then one or more of the weights  approach zero . This is shown even

more s t r ik ingly  when the matr ix  of the last  example is reflected across its second d iagona l ,

I .e . , when the Jacobi matrix with the following general row

l — ( n + 1 — i ) / n , ( n + l — i ) / n — 2 , l — ( n — i)/n , i = l , . . . , n ,

Is considered . Now the reconstruction breaks down in single precision already for n = 30 ~~n . e

becomes too smal l .  Even for n = 20 , we have ~1 -X 1 — 2. -7.  In fact , in computa t ions

using tq f 1 to obtain the spectral Information , some weights become negative for n = 30 , w h ile ,

for n 10 and 20 , we obtain approximations with errors of the order of 1. -4 and 2 - 2 ,

respectively.
— 14-
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5. The connection with  Gauss quadrature.  For the given Jacobi matrix J in ( 1), let

(P~)~ be the polynomial  sequence generated by the recursion

b~~1
P. ~1

(t)  = (t — a~~1
)P .( t)  — b~P 1

(t) ~ j = 0 , . . . , n —

(13) P 1(t)  := 0, P0(t) :

w ith b0 arb i t rary ,  b ~ 0. The sequence (P .) is related to the sequence P~
)

with p . ( t )  := det ( t  — J
1

) ,  all I , of monic po lynomia l s  by

(14) = (b 1 . . . b ) P .

as one verifies easi ly,  e .g . , by comparing (13) and ( 2 ) .

Let now ~ be a monotone function on some interval  [ A , B ] so that ( P ) ~ is

ortho npr rnpl with respect to the inner product

B
:= f  f ( t )g( t ) ~,(dt)

‘
~ A

( Leir ma 1 provides a simple proof of the existence of such I a .)  Then the zeros 
~1 <

of P must  lie In [A , B ] ,  and there exist positive weights w1, ..  . , w so that , for e o r ~

f c C2
~ [A , B J ,

(15) 
B 

f(t) ~ (dt) = 

j~~l 
w~f(X

1
) + b 1

. . b f (2
~~(~ )/ (2n) ! for some ~~ I A . BE

If we take this fact for granted , then it  follows that

6I-J = (P 1, F’~
)
~ 

= L Wr Pi (X r
)P j (\ r

) for i + < 2 n

showing that

(5’) (f ,g)  := 
J = l

Is an Inner product on D’ with respect to which (P 1
)0 is orthonormal , hence for which

is an orthogonal sequence .

— 1 5—



This shows that the construction of the weights (w .) for (5 ) ,  which was crucial  for

our numerical solution of the various inverse eigenvalue problems , can be started from any

convenient formula for the weights  in a Gaussian quadrature fo rmula .

For Instance , one could s tar t  w i t h  the fol lowing consequence of the Chr i s to f fe l -D arboux

formula ,

( 16) w . P
T( X ) p (X )  = 1 for j = I . . .

Here , P(~~) denotes the n-vector (P 0(\ ) ,  . . ,
~~ 

P~~ 1( \ D •  By (13) ,  P R )  is an eigenvector

for J belonging to the eigenvalue X .  Therefore , w i t h  u := (u 1~, . . . , u )  a uri t t eigen-

vector of J for K , (16) implies that

(17) w • = ~~~~~~~~~~~ = 1, . . . , n

Since P0(x) = 1, we obtain in this way the formul a

(18) w
1 

= U 1 ,  = 1 n

used by Golub and Welsch [4 ]  to compute the we igh t s .  Problems A , B , and C can now be

solved by deriving fro m the given data in format ion  about the elgenvectors  of J .

A more direct approach might be to start with the well known fo rmula

k 1 I(19) = - 

~~ P (x )P (\ ) 
=

with k
1 

the leading coefficient of P ., i. e. , k = l/( b1 
. . . . b

y
) .  This for  i u la i nvo lves

the ‘next ’ orthogonal polynomial P~~ 1. But , since P ( \ ,) 0 for all j ,  we have

= -b~ p 1(K , ) = _b
~

Pn i (K
i
)/k n i

by the three-te rm recurrence , therefore we also have

( 19 ’) w
1 

= ~~~~~~~~~~~~~~~~~ i =

which shows how equation (7) could have been derived from standard results in Gauss

quadrature .

-16-
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